Elliptic Operators and Higher Signatures
نویسندگان
چکیده
Building on the theory of elliptic operators, we give a unified treatment of the following topics: • the problem of homotopy invariance of Novikov’s higher signatures on closed manifolds; • the problem of cut-and-paste invariance of Novikov’s higher signatures on closed manifolds; • the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.
منابع مشابه
J un 2 00 4 ELLIPTIC OPERATORS AND HIGHER SIGNATURES
Building on the theory of elliptic operators, we give a unified treatment of the following topics: • the problem of homotopy invariance of Novikov's higher signatures on closed manifolds; • the problem of cut-and-paste invariance of Novikov's higher signatures on closed manifolds; • the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملOn Algebraically Integrable Differential Operators on an Elliptic Curve
We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003